> #%"5@ 0bjbj22 92XX\4\k0@&&&&>&X+/$3Rm5v00%0yyy&y&yyV%@D&4`rϦR%&;00k0%x55D& $D5\&(L
6yC,o*00\\DDv\\Sutherland High School Mrs. Maine
AP Calculus Syllabus (AB)
I. Functions, Graphs and Limits
Analysis of graphs.
With the aid of technology, graphs of functions are often easy to produce. The emphasis is on the interplay between the geometric and analytic information and on the use of calculus both to predict and to explain the observed local and global behavior of a function.
Limits of functions (including onesided limits).
An intuitive understanding of the limiting process is sufficient for this course.
Calculating limits using algebra.
Estimating limits from graphs or tables of data.
Asymptotic and unbounded behavior.
Understanding asymptotes in terms of graphical behavior
Describing asymptotic behavior in terms of limits involving infinity.
Comparing relative magnitudes of functions and their rates of change.
(For example, contrasting exponential growth, polynomial growth, and logarithmic growth.)
Continuity as a property of functions.
The central idea of continuity is that close values of the domain lead to close values of the range.
Understanding continuity in terms of limits.
Geometric understanding of graphs of continuous functions.
(Intermediate Value Theorem and Extreme Value Theorem)
II. Derivatives
Concept of the derivative.
The concept of the derivative is presented geometrically, numerically, and analytically, and is interpreted as an instantaneous rate of change.
Derivative defined as the limit of the difference quotient.
Relationship between differentiability and continuity.
Derivative at a point.
Slope of a curve at a point. Examples are emphasized, including points at which there are vertical tangents and points at which there are no tangents.
Tangent line to a curve at a point and local linear approximation.
Instantaneous rate of change as the limit of the average rate of change.
Approximate rate of change from graphs and tables of values
Derivative as a function.
Corresponding characteristics of graphs of EMBED Equation and EMBED Equation .
Relationship between the increasing and decreasing behavior of f and the sign of EMBED Equation .
The Mean Value Theorem and its geometric consequences.
Equations involving derivatives.
Verbal descriptions are translated into equations involving derivatives and vice versa.
Second derivatives.
Corresponding characteristics of the graphs of EMBED Equation , EMBED Equation , and EMBED Equation .
Relationship between the concavity of EMBED Equation and the sign of EMBED Equation .
Points of inflection as places where concavity changes.
Applications of derivatives.
Analysis of curves, including the notions of monotonicity and concavity.
Optimization , both absolute (global) and relative (local) extrema.
Modeling rates of change, including related rates problems
Use of implicit differentiation to find the derivative of an inverse function.
Interpretation of the derivative as a rate of change in varied applied contexts, including velocity, speed, and acceleration.
Computation of derivatives.
Knowledge of derivatives of basic functions, including xr, exponential, logarithmic, trigonometric, and inverse trigonometric functions.
Basic rules for the derivative of sums, products, and quotients of functions.
Chain rule and implicit differentiation.
III. Integrals
Riemann sums
Concept of a Riemann sum over equal subdivisions
Computation of Riemann sums using left, right, and midpoint evaluation points
Interpretations and properties of definite integrals.
Definite integral as a limit of Riemann sums.
Definite integral of the rate of change of a quantity over an inverval interpreted as the change of the quantity over the interval.
EMBED Equation.3 = f(b) f(a)
Basic Properties of definite integrals (for example, additivity and linearity).
Applications of integrals.
Appropriate integrals are used in a variety of applications to model physical, social, or economic situations. Although only a sampling of applications will be included, students will be able to adapt their knowledge and techniques to solve other similar application problems. Whatever aplications are chosen, the emphasis is on using the integral of a rate of change to give accumualted change or using the method of setting up an approximating Riemann sum and representing its limit as a definite integral. To provide a common foundation, specific applications will include finding the area of a region, the volume of a solid with known cross sections, the average value of a function, and the distance traveled by a particle along a line.
Fundamental Theorem of Calculus
Use of the Fundamental Theorem to evaluate definite integrals.
Use of the Fundamental Theorem to represent a particular antiderivative, and the analytical and graphical analysis of functions so defined.
Techniques of antidifferentiation
Antiderivatives following directly from derivatives of basic functions.
Antiderivatives by substitution of variables (including change of limits for definite integrals).
Applications of antidifferentiation
Finding specific antiderivatives using initial conditions, including applications to motion along a line
Solving separable differential equations and using them in modeling. In particular, studying the equation y = ky and exponential growth.
Numerical approximations to definite integrals.
Use of Riemann sums and the Trapezoidal Rule to approximate definite integrals of functions represented algebraically, geometrically, and by tables of values
%/0IJKNjm i
]
!
+ArsżŶŶŶŶżŶŶŶ̶̛̆̆jh'&EHUj4U?
h'&UVjh'&EHUjU?
h'&UVjh'&Uh'&CJEH
h'&CJh'&5>*CJ
h'&5CJh'&h'&5CJEH
h'&5CJhZECJOJQJh'&CJEHOJQJh'&CJOJQJ0JKkl
6
g
h
$XM$$$PS$PS$PS$PS$PS$PS$,e$,e$,e$PS$PS$,e$,e
&F
p@d
p@0d^`0
p@0^`0$
p@da$
p@0dT^`0QDs
$
)*D$,e$PS$PS$PS$,e$,e$,e$PS$PS$PS$PS$PS$$,e$,e$PS$PS$
p@0d^`0
p@d^`
p@d^`
&F
p@d!j=>S0hi$,e$,e$,e$PS$PS$$$$$,e$,e$,e$PS$PS$$$$$,e$PS$PS
p@d^
p@d^
p@d^`
&F
p@d?S*+,g9qܼܧܒ}sll
h'&CJ\j"
h'&EHUjU?
h'&UVjTh'&EHUjǩU?
h'&UVjc h'&EHUjU?
h'&UVjvh'&EHUj4U?
h'&UVjh'&EHUjU?
h'&UVh'&
h'&5CJ
h'&CJjh'&Ujh'&EHU'N99:IW$,e$,e$,e$,e$$PS$PS$$,e$,e$PS$PS$PS$,e$,e$PS
p@0d^`0
p@d^`
p@d
&F
p@dqr:?HW
=YEe2T$Jjh'&CJEHU\5jI?
h'&B*CJOJQJUVmH nH phujh'&CJU\h'&5>*CJ
h'&5CJ
h'&CJ\h'&CJH*\<;<XCDe01T$PS$,e$$$_$,e$PS$PS$PS$PS$PS$,e$$PS$PS$,e$,e
p@@d^`@
p@d
p@d^
&F
p@d
p@d^`$J$PS$PS$,e$$PS$PS$
&F
p@d
p@0d^`0
p@d70PBP/ =!"#$%0$Dd
0
#A2JCRMMJ˹Z&D`!CRMMJ˹Z^`!Hx]JQƿfm.*(DJvX{ߤM=J9Q{}] $She5ޡxsak慶f;tM]WlU6.')5~u(h
kz,&T\ϰ)nGqjdRO}GhtL*ujE4^}:!Ez"/6[% ./
Dd
,0
#A2i ;
6E`!= ;
6Hx]PKJQǙ3
be
3x.!Gp/3Ƀ]UM@ @}u详(i9Qqאcak߄Xp)[>/=Zq:]^8!ŏ+M
<Gmy
d"</.&pr2IP#z0/=Zq:]^8!ŏ+M
<Gmy
d"</.&pr2IP#z0/=Zq:]^8!ŏ+M
<Gmy
d"</.&pr2IP#z0LaE(Yz=#zgRG^0Yi)Z4Yă1\}UrxN!{O '[GY@XBۄ_&aݻ0[,ر&,5:Dd
0
#A2JCRMMJ˹Z&`!CRMMJ˹Z^`!Hx]JQƿfm.*(DJvX{ߤM=J9Q{}] $She5ޡxsak慶f;tM]WlU6.')5~u(h
kz,&T\ϰ)nGqjdRO}GhtL*ujE4^}:!Ez"/6[% ./
Dd
@,0
#A2mGIWyJ;xIf
`!AGIWyJ;x x]PJQ$s`sXXi}pAKj7v~yH,3of&P 譮(i9!ג?oApJǦsr*O7>LaE(Yz=#zgRG^0Yi)Z4Yă1\}UrxN!{O '[GY@XBۄ_&aݻ0[,ر&,5:Dd
J
CA?"2u8`~O <.gQW`!I8`~O <.g
!6$')(*,+/.021354S79:;<=>?@ABCDEFGHIJKLMNOPQRRoot Entry. FPrϦ&Data
&WordDocument92ObjectPool0`rϦPrϦ_1062578611
F`rϦ`rϦOle
CompObjSObjInfo &)+,./023457
F Equation Equation Equation9q
f#4u4XfAll
F Equation Equation EquatiOle10Native $Ole10ItemName_1062578484(F`rϦ`rϦOle
CompObjSObjInfo Ole10Native
$Ole10ItemNameon9q
e@2fXfAll
F Equation Equation Equation9q_1062578625F`rϦ`rϦOle
CompObj
SObjInfoOle10Native$Ole10ItemName_1062578675"F`rϦ`rϦOle
f#4u4XfAll
F Equation Equation Equation9q
2f4XfAllCompObjSObjInfoOle10Native$Ole10ItemName_1062578631F`rϦ`rϦOle
CompObj SObjInfo
F Equation Equation Equation9q
f#4u4XfAll
F Equation Equation EquatiOle10Native!$Ole10ItemName_1062578682$F`rϦ`rϦOle
CompObj#&SObjInfo!Ole10Native%'"$Ole10ItemName#on9q
2f4XfAll
FMicrosoft Equation 3.0DS EquationEquation.39q_1061813293*F`rϦ`rϦOle
$CompObj)+%fObjInfo,'Equation Native (\1Table85SummaryInformation(/*DocumentSummaryInformation814@mIyI
f'(x)dxab
+"Oh+'0
4@L
XdltSutherland High Schooluth
Nancy Ramsaygh ancNormal.dotyPCSDl.d2SDMicrosoft Word 10.0@@:SB@L `\xڍQJA&œBA@p 搽 ?AIUtngwfzINcHYWNCB069d6W{4DPr^V2.%5ոjU~QOnf`%Q6Hz)boVߢ'SE{;1s
Z~ג.Vz~JT_߫",>4foFۣ~1)1FX_Ϧ@X_ϦE՜.+,0hp
homea'A
Sutherland High SchoolTitle
FMicrosoft Word Document
MSWordDocWord.Document.89qD@DNormalCJOJQJ_HmH sH tH DADDefault Paragraph FontViVTable Normal :V44
la(k(No ListlOlDefaultd@1$7$8$H$0B*CJOJPJQJ_HmHnHphsH tH u@O@Hidden0B*CJEHOJQJphFOF
Default SSB*CJEHOJQJphh@"hHeader$d1$7$8$H$a$'5B*CJOJPJQJmHnHphufO2fBodyd@1$7$8$H$0B*CJOJPJQJ_HmHnHphsH tH ud @BdFooter$d@1$7$8$H$a$#6B*OJPJQJmHnHphujORjFootnoted1$7$8$H$,B*OJPJQJ_HmHnHphsH tH uPOaPFootnote IndexB*CJEHH*OJQJphtOrtHidden1d@1$7$8$H$^0B*CJOJPJQJ_HmHnHphsH tH uzOzHidden2"$d@1$7$8$H$^a$0B*CJOJPJQJ_HmHnHphsH tH u@O@Hidden3B*CJEHOJQJph@O@Hidden4B*CJEHOJQJph@O@Hidden5B*CJEHOJQJph@O@Hidden6B*CJEHOJQJphBOBHidden75B*CJEHOJQJphBOBHidden85B*CJEHOJQJph@O@Hidden9B*CJEHOJQJphBOBHidden10B*CJEHOJQJphDODHidden115B*CJEHOJQJphBO!BHidden12B*CJEHOJQJphvO2vHidden13#d@1$7$8$H$^0B*CJOJPJQJ_HmHnHphsH tH uBOABHidden14B*CJEHOJQJphBOQBHidden15B*CJEHOJQJphvObvHidden16&d@1$7$8$H$^0B*CJOJPJQJ_HmHnHphsH tH uBOqBHidden17B*CJEHOJQJphHOHHidden185>*B*CJEHOJQJphHOHHidden195>*B*CJEHOJQJphvOvHidden20*d@1$7$8$H$^0B*CJOJPJQJ_HmHnHphsH tH uBOBHidden21B*CJEHOJQJphDODHidden225B*CJEHOJQJph2 z zh
0JKkl6ghQDs$)*D!j= > S 0
h
i
N9
9
:
I
W
<;<XCDe01T$J000000000 0 0 000 0 0 0000 0 0 000000 0 0 000 0 0 0 000 0 0 0 0 000 0 0 000 0 0 0 0 000 0 0 0000 0 000 0 00 000000 0 000 0 000 0 000 00O90O90Dqr
*
,
:::::::::8@0(
B
S ?@>bD"@>b"@>b,"@>bl" @>b"**
//9*urn:schemasmicrosoftcom:office:smarttagsplace=*urn:schemasmicrosoftcom:office:smarttags PlaceName=*urn:schemasmicrosoftcom:office:smarttags PlaceType9*urn:schemasmicrosoftcom:office:smarttagsStater

0
6
7
9
S /
I
V
06i+Dr? S

i
9:
I
J
W
Ee2T$r

Nancy J. RamsayUserUserUserUserUserUserUserPCSD#D2#"S2}EpN0^`0OJPJQJ^Jo(^`OJ QJ o(o ^ `OJ
QJ
o(^`OJQJo(xx^x`OJ QJ o(oHH^H`OJ
QJ
o(^`OJQJo(^`OJ QJ o(o^`OJ
QJ
o(GG^G`OJPJQJ^Jo(^`OJ QJ o(o ^ `OJ
QJ
o(^`OJQJo(^`OJ QJ o(oWW^W`OJ
QJ
o(''^'`OJQJo(^`OJ QJ o(o^`OJ
QJ
o(0^`0OJPJQJ^Jo(^`OJ QJ o(o ^ `OJ
QJ
o(^`OJQJo(xx^x`OJ QJ o(oHH^H`OJ
QJ
o(^`OJQJo(^`OJ QJ o(o^`OJ
QJ
o(#"#EpX` @( X+ @ @'&ZE@TU@BSMT_WINCAP_PO_HP4100tnNe01:winspoolHP LaserJet 4100 PCL 6BSMT_WINCAP_PO_HP4100tn?dXr.HP LaserJet 4100 PCL 6X&X&2xeP.Ca=~~ZD/PI
<4! 6/;7܍Y993ptևm;qHv3#e2uD[P+h9"0v>' 6OiDgC U^t;:K{}@a2F[ mR>tVR[z/:O?[RNyB~W:臌֪
g5g] \Ta 59ܢ^IY
Q`:JpFBSMT_WINCAP_PO_HP4100tn?dXr.HP LaserJet 4100 PCL 6X&X&2xeP.Ca=~~ZD/PI
<4! 6/;7܍Y993ptևm;qHv3#e2uD[P+h9"0v>' 6OiDgC U^t;:K{}@a2F[ mR>tVR[z/:O?[RNyB~W:臌֪
g5g] \Ta 59ܢ^IY
Q`:JpF[@@UnknownGz Times New Roman5Symbol3&z ArialEScript MT Bold;&z Helvetica3z Times71 CourierY New YorkTimes New Roman5"Geneva?5 z Courier New;Wingdings hh#&h#&YE'E'!xx4d3qH?@Sutherland High SchoolNancy RamsayPCSDCompObj6j